130,351 research outputs found

    The heating of the thermal plasma with energetic electrons in small solar flares

    Get PDF
    The energetic electrons deduced from hard X-rays in the thick target model may be responsible for heating of soft X-ray plasma in solar flares. It is shown from OSO-7 studies that if a cutoff of 10 keV is assumed, the total electron is comparable to the thermal plasma energy. However, (1) the soft X-ray emission often appears to begin before the hard X-ray burst, (2) in about one-third of flares there is no detectable hard X-ray emission, and (3) for most events the energy content (assuming constant density) of soft X-ray plasma continues to rise after the end of the hard X-ray burst. To understand these problems we have analyzed the temporal relationship between soft X-rays and hard X-rays for 20 small events observed by ISEE-3 during 1980. One example is shown. The start of soft X-ray and hard X-ray bursts is defined as the time when the counting rates of the 4.8 to 5. keV and 25.8 to 43.2 keV channels, respectively, exceed the background by one standard deviation

    Spatiotemporal instability of a confined capillary jet

    Full text link
    Recent experimental studies on the instability appearance of capillary jets have revealed the capabilities of linear spatiotemporal instability analysis to predict the parametrical map where steady jetting or dripping takes place. In this work, we present an extensive analytical, numerical and experimental analysis of confined capillary jets extending previous studies. We propose an extended, accurate analytic model in the limit of low Reynolds flows, and introduce a numerical scheme to predict the system response when the liquid inertia is not negligible. Theoretical predictions show a remarkable accuracy with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008

    Tunneling and delocalization in hydrogen bonded systems: a study in position and momentum space

    Full text link
    Novel experimental and computational studies have uncovered the proton momentum distribution in hydrogen bonded systems. In this work, we utilize recently developed open path integral Car-Parrinello molecular dynamics methodology in order to study the momentum distribution in phases of high pressure ice. Some of these phases exhibit symmetric hydrogen bonds and quantum tunneling. We find that the symmetric hydrogen bonded phase possesses a narrowed momentum distribution as compared with a covalently bonded phase, in agreement with recent experimental findings. The signatures of tunneling that we observe are a narrowed distribution in the low-to-intermediate momentum region, with a tail that extends to match the result of the covalently bonded state. The transition to tunneling behavior shows similarity to features observed in recent experiments performed on confined water. We corroborate our ice simulations with a study of a particle in a model one-dimensional double well potential that mimics some of the effects observed in bulk simulations. The temperature dependence of the momentum distribution in the one-dimensional model allows for the differentiation between ground state and mixed state tunneling effects.Comment: 14 pages, 13 figure

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    Galaxy alignment on large and small scales

    Full text link
    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web

    Frequency Locking in Spatially Extended Systems

    Full text link
    A variant of the complex Ginzburg-Landau equation is used to investigate the frequency locking phenomena in spatially extended systems. With appropriate parameter values, a variety of frequency-locked patterns including flats, π\pi fronts, labyrinths and 2π/32\pi/3 fronts emerge. We show that in spatially extended systems, frequency locking can be enhanced or suppressed by diffusive coupling. Novel patterns such as chaotically bursting domains and target patterns are also observed during the transition to locking

    A Thermal-Nonthermal Inverse Compton Model for Cyg X-1

    Get PDF
    Using Monte Carlo methods to simulate the inverse Compton scattering of soft photons, we model the spectrum of the Galactic black hole candidate Cyg X-1, which shows evidence of a nonthermal tail extending beyond a few hundred keV. We assume an ad hoc sphere of leptons, whose energy distribution consists of a Maxwellian plus a high energy power-law tail, and inject 0.5 keV blackbody photons. The spectral data is used to constrain the nonthermal plasma fraction and the power-law index assuming a reasonable Maxwellian temperature and Thomson depth. A small but non-negligible fraction of nonthermal leptons is needed to explain the power-law tail.Comment: 5 pages, 2 PostScript figure, uses aipproc.sty, to appear in Proceedings of Fourth Compton Symposiu

    Colloidal Dynamics on Disordered Substrates

    Full text link
    Using Langevin simulations we examine driven colloids interacting with quenched disorder. For weak substrates the colloids form an ordered state and depin elastically. For increasing substrate strength we find a sharp crossover to inhomogeneous depinning and a substantial increase in the depinning force, analogous to the peak effect in superconductors. The velocity versus driving force curve shows criticality at depinning, with a change in scaling exponent occuring at the order to disorder crossover. Upon application of a sudden pulse of driving force, pronounced transients appear in the disordered regime which are due to the formation of long-lived colloidal flow channels.Comment: 4 pages, 4 postscript figure
    corecore